训练keras时遇到了一个问题,就是内存不足,将 .fit 改成 .fit_generator以后还是放不下一张图(我的图片是8192×8192的大图==64M)。于是解决方法是将大图切成小图,把小图扔去训练,跑出来的图再拼成一个大图

实验发现我的keras(win10 - 16G内存)只放得下最多4副小图(2048×2048×4==16M),
再多就会报错exit :
Allocation of 4831838208 exceeds 10% of system memory.
原因大概是除了numpy本身要存这些图,keras训练中也会对应有额外的消耗
一、大图切片成小图
'''
读入一个图片0.bmp,切成指定数目个小图片(16个)
文件夹名out
'''
from PIL import Image
import sys,os
cut_num = 4 # 4*4=16个图片
#将图片填充为正方形
def fill_image(image):
width, height = image.size
#选取长和宽中较大值作为新图片的
new_image_length = width if width > height else height
#生成新图片[白底]
#new_image = Image.new(image.mode, (new_image_length, new_image_length), color='white')
new_image = Image.new(image.mode, (new_image_length, new_image_length))
#将之前的图粘贴在新图上,居中
if width > height:#原图宽大于高,则填充图片的竖直维度
#(x,y)二元组表示粘贴上图相对下图的起始位置
new_image.paste(image, (0, int((new_image_length - height) / 2)))
else:
new_image.paste(image, (int((new_image_length - width) / 2),0))
return new_image
#切图
def cut_image(image):
width, height = image.size
item_width = int(width / cut_num)
box_list = []
# (left, upper, right, lower)
for i in range(0,cut_num):#两重循环,生成图片基于原图的位置
for j in range(0,cut_num):
#print((i*item_width,j*item_width,(i+1)*item_width,(j+1)*item_width))
box = (j*item_width,i*item_width,(j+1)*item_width,(i+1)*item_width)
box_list.append(box)
image_list = [image.crop(box) for box in box_list]
return image_list
#保存
def save_images(image_list):
index = 1
for image in image_list:
image.save('out/'+str(index) + '.bmp', 'BMP')
index += 1
if __name__ == '__main__':
file_path = "0.bmp"
os.mkdir("out")
image = Image.open(file_path)
#image.show()
image = fill_image(image)
image_list = cut_image(image)
save_images(image_list)